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Abstract: In order to analytically estimate the HMO resonance energy for a conjugated compound, a reference polynomial, 
i.e., a characteristic polynomial for the reference structure, is constructed by graph-theoretically excluding from the coeffi­
cients of the HMO characteristic polynomial all contributions from cyclic components in the r system. The resonance energy 
is then defined as the difference between the total ir energy calculated from the HMO characteristic polynomial for the orig­
inal compound and that calculated from the corresponding reference polynomial. The method can be applied to conjugated 
hydrocarbons, heterocycles, and even ionic species. The obtained resonance energies are in excellent agreement with those of 
Hess and Schaad, and are evidently of Dewar type. The uniqueness of these resonance energies, derived without ambiguities 
or arbitrary parametrization, is characteristic of this approach. 

Resonance energy and aromaticity are key concepts in 
the theory of conjugated hydrocarbons and heterocycles. So 
far, molecular orbital theories have provided much of the 
information concerning aromatic stability.1 Especially, the 
total T energy of a conjugated hydrocarbon with n double 
bonds has often been compared with that of n ethylene mol­
ecules. Delocalization energy, which is defined as the differ­
ence between these two x energies, has been considered as a 
measure of aromaticity.Ia The published experimental reso­
nance energies are all related to such HMO delocalization 
energies.111 However, the lack of correlation between delo­
calization energies for conjugated hydrocarbons and their 
chemical behavior definitely shows that the delocalization 
energies are disqualified from predicting their aromatici-
ties.2 

In 1965, an epoch-making theory of aromaticity was pro­
posed by Dewar and Gleicher,3 and was later developed by 
Dewar's group.4-5 The important point in their theory is 
that the reference energy, relative to which aromatic stabili­
zation is calculated, was dramatically redefined. Using a 
Pariser-Parr-Pople (PPP) method, they found that the en­
ergy of any acyclic polyene is an additive function of indi­
vidual bond energy terms. With the same bond energies, 
they estimated a reference energy for a cyclic conjugated 
system. Their reference energy hence represents the energy 
which the compound would possess if it were absolutely ole-
finic in nature. It is noteworthy that a considerable double 
bond character was attached to the formal single bonds in 
the reference structure for the conjugated system. The re­
sults were that acyclic polyenes were defined as nonaromat-
ic with zero resonance energies, whereas cyclic compounds 
were found to have a wid.e and continuous variation in reso­
nance energies, from positive (aromatic) to negative (anti-
aromatic). These resonance energies were termed Dewar-
type resonance energies or Dewar resonance energies for 
short.6 Dewar resonance energies can be considered as the 
best aromaticity values available, and they correlate very 
well with experimental stabilities.4-6 

In 1971, Hess and Schaad obtained analogous resonance 
energies on the basis of the simple HMO method.2 '7-13 

They classified x bonds in acyclic polyenes into eight differ­
ent types (five types of carbon-carbon double bonds and 
three types of carbon-carbon single bonds, depending upon 
the number of attached hydrogens) and assigned a particu­
lar -ir-bond energy to each x-bond type.7 They showed that 
the •K energy of any acyclic polyene can be expressed with 
these x-bond energies. With the same 7r-bond energies, they 
estimated the reference energies for cyclic conjugated sys­
tems, and obtained resonance energies which nicely parallel 
the PPP results. 

Recently, we developed a similar theory of aromatici-

tyi4,i5 according to the same principle as Dewar's3-5 within 
the HMO model. In contrast to the method of Hess and 
Schaad, we adopted the x energy of an infinitely large mo­
nocyclic system as a nonaromatic basis to estimate the ref­
erence energy for a monocyclic compound of finite size. As 
will be seen later, the obtained resonance energies are in 
close and consistent parallel with those of Hess and 
Schaad.7-10-13 

Attempts have also been made to correlate Dewar-type 
resonance energies with particular structural features of un­
saturated compounds. Herndon demonstrated that a par­
ametrized structure-resonance theory which uses only Ke­
kule structures nicely duplicates Dewar-type resonance 
energies for a series of .benzenoid and nonbenzenoid hydro­
carbons.1617 It has been emphasized that the algebraic 
structure count (ASC) and not the number of Kekule struc­
tures plays an important role in stabilizing the conjugated 
hydrocarbon.18 For benzenoid hydrocarbons, ASC agrees 
with the number of Kekule structures. Quite recently, 
Herndon et al. found that, for these compounds, the reso­
nance energy is simply proportional to the logarithm of 
ASC.19 Other topological methods for estimating the total 
ir energy might also be useful for predicting the stability of 
the conjugated system.20-21 

In this context, we examine graph-theoretically the 
HMO characteristic polynomials for the conjugated sys­
tems in detail, and present a new definition of Dewar-type 
resonance energies for conjugated hydrocarbons and het­
erocycles. We assume the HMO theory throughout this ar­
ticle. All energies are given in units of /3. 

Method A-I for Evaluating Resonance Energies 

To begin with, we describe briefly our previous method 
for evaluating resonance energies of monocyclic conjugated 
systems.15 Consider a hypothetical monocyclic periodic con­
jugated system with n unit structures. A general formula 
for such a conjugated system is illustrated as I, in which the 
unit structure (XYZ) in brackets is so chosen that the entire 
system with n = 1 becomes the compound under consider­
ation, II. 

XYZ-i r ( — X Y Z - )„• 

I II 

For example, to estimate the resonance energy of fulvene 
(III), one begins by imagining the periodic system IV. The 
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H ^H 

III 

CH2 

Il 
- ( — C — C H = C H — C H = C H — ) „ - | 

rv 
x energy of this hypothetical compound can be determined 
after solving the following HMO secular equations:7 

-atX +bi=0 

-biX+ft-i +aj + Ci = O 

-aX + bi + di = 0 

-diX+Ci + ei = 0 (1) 

-dX+di+fi = O 

-ftX + et + b,+ 1 = O 

i = 1, 2, . . . , « — 1, n 

where a,-, bi, c„ dt, et, and fi are the Hiickel coefficients of 
the atomic orbitals on the carbon atoms arranged in this 
manner: 

ai 

CH2 CH2 

- C H = C H - C - C H = C H — C H = C H - C - C H = 
e«-i / , - i bl f, b, + i 

The signs of these coefficients are determined so as to ac­
cord with the graph-theoretical definitions,22 which will be 
referred to later. 

These equations must be solved together with boundary 
conditions:7 

a„+\ = fli; bn+\ = Ai; c„+\ = c\\ 

dn+\ = d\;e„+\ = e\\ and/„+i =f\ (2) 

The function 

bj = sin /A (3) 

automatically satisfies eq 2 if 

A = A„m = Im-K/n (4) 

m = O, 1, . . . , n — 1 
The elimination of a,-, c/, di, e,-,/}, and/}_i in eq 1, followed 
by substitution of eq 3 and 4, gives n algebraic equations of 
degree six: 

Pnm(X) =X6- 6A4 + 8A2 - 2 cos knmX - 1 = 0 (5) 

In general, HMO secular equations for a monocyclic pe­
riodic system with n unit structures (I) can be reduced to n 
algebraic equations of the same degree as the number of 
atoms (TV = 2/) in every unit structure: 

Pnm(X) = £ Ak(cos Anm)XN~k = O (6) 

where the coefficients Ak(cos A„m) are the linear functions 
of cos Anm. 

The roots of Pnm(X) = O correspond to N of the x-orbital 
energies for the type-I system with n unit structures. They 
are arranged in a decreasing order: 

X = ,Yi(cos A„m) > JY2(COs Anm) >.. > Xj(COS Anm) 
> A)+1 (cos A„m) > . . . SiA1Af-I(COS A„m) 

> A}v(cos A„m) (7) 

Among them, the larger j roots give the x energies of the 
occupied x orbitals in the type-I system. Accordingly, the 

total x energy of the type-I system is obtained by summing 
the larger j roots for every A„m over all m values. 

The unit x energy which represents the x energy assigned 
to every unit structure can be obtained by dividing the total 
x energy of the system by the number of unit structures («). 
It is a function of the number of unit structures in the sys­
tem, because the x energy might be influenced by the aro­
matic character for smaller systems. When n is large 
enough, the type-I system can, however, be considered as a 
nonaromatic species. The unit x energy of any infinitely 
large type-I compound should hence be free from aromatic-
ity. The unit x energy for such an infinitely large type-I 
compound (Eu) is generally expressed as follows:23 

2 «-i 
Eu = lim - £ (JYi(COS Anm) + . . . + A)(cos A„m)| 

n—*•« n m—0 

= 2 1 (A-I(COS 2xx) + . . . + A)(COS 2xx)j dx (8) 

According to Dewar's finding that the x energy of a nonar­
omatic species is additively estimated,3 a monocyclic type-I 
system of any size should have the same unit x energy as 
that of the corresponding infinitely large type-I system if it 
were not resonance stabilized. This implies that Eu can be 
used as a reference energy in estimating the aromaticity of 
the simplest type-I compound, i.e., the one with n = 1 (II). 

Then, the Dewar-type resonance energy for the simplest 
type-I compound is given as the difference between the total 
HMO x energy of the compound and the unit x energy of 
the corresponding infinitely large periodic species. As stated 
in previous papers,14'15 this method for estimating reso­
nance energies is very successful in predicting the aromati-
cities of monocyclic compounds such as annulenes, radi-
alenes, heteroannulenes, and fulvenes. This method is here­
after referred to as method A-I. The original method of 
Hess and Schaad is abbreviated to method HS. 

Method A-II for Evaluating Resonance Energies 

Next, we define a reference polynomial R(X) for a mo­
nocyclic conjugated system of type II as 

R(X)= t, BkX
N~k 

k = 0 
(9) 

where the coefficients Bk are determined from the coeffi­
cients OfPn^(A") for the corresponding type-I system in the 
manner: 

1 n-\ /»1 
Bk= lim - Y, ^Zt(COS A„m) = \ Ai1(CQs 2-KX) dx (10) 

„—o=nOT=o Jo 

In order to obtain the coefficients of R(X), we have only to 
replace every cosine in the coefficients ^ ( c o s Anm) by its 
average value, i.e., zero, because the latter coefficients are 
the linear functions of cos Anm, and because the common 
argument of the cosine varies from O to 2x. For example, 
the reference polynomial for fulvene, readily derived from 
eq 5, is given by eq 11. 

R(X) = X6 - 6A-4 + 8A-2 - 1 ( H ) 

In 1972, Trinajstic et al. established the graph-theoreti­
cal method for determining the coefficients of the HMO 
characteristic polynomial for a conjugated hydrocarbon.22 

The HMO characteristic polynomial P(A") for a conjugated 
hydrocarbon is written in a general form as 

P(X) = £ CkX
N~k 

k = 0 

(C0= 1) 

(12) 

and each coefficient Ck can be obtained graph-theoretically 
as a function of the number of disjoint bonds and/or cyclic 

Aihara / New Definition of Dewar-Type Resonance Energies 



2752 

components of the molecular graph. The method has been 
described in detail previously.22 One can also obtain the 
same polynomial by the expansion of eq 13, 

P(X)=U(X-X1) (13) 
1=1 

where the Xj are the HMO eigenvalues for the x system 
under consideration. Either method gives the HMO charac­
teristic polynomial for fulvene as 

P(X) = X6 - 6X4 + &X2 - 2X - 1 (14) 

As may be noted by comparing eq 5, 11, and 14, these 
three kinds of polynomials resemble each other, in that they 
have many common coefficients. In fact, the P(X)-typc 
polynomial for a given hydrocarbon can readily be derived 
by replacing the factors of 2 cos A„m by 2 in the coefficients 
of Pnm(X) for the corresponding type-I system. It is espe­
cially noteworthy that the coefficients of the reference poly­
nomial R(X) are determined graph-theoretically by ignor­
ing enumeration of the cyclic components of the molecular 
graph. Therefore, R(X) for a conjugated hydrocarbon is de­
fined as 

RW = £ (-l)kp(2k)XN~2k (15) 
/t=0 

where p(2k) is the number of ways in which k bonds are so 
chosen from the x system of the hydrocarbon that no two of 
them are connected to each other,24 and j is half the num­
ber of carbon atoms. By definition, p(0) is equal to unity. 
The summation of p(2k) over all k values gives Hosoya's 
topological index.24 Such a reference polynomial is always 
an even function of X for even-membered conjugated hy­
drocarbons, so that, if Xi is a root of R(X) = O, -Xi is also 
a root. 

Now, let us examine the physical meaning of the refer­
ence polynomial. In method A-I, every root of Pnm(X) = O 
for a periodic type-I system is expressed as a function of cos 
A„m. By analogy with solid state theory,25 when n is large 
enough, the A;th roots Xk (cos Anm) for all m values are con­
sidered to form the fcth energy band as a whole. Conversely, 
the /cth energy band in the type-I system is said to accom­
modate densely n x levels specified by the number m. 

From another viewpoint, each energy level in a given 
compound II is considered to split into n levels in the corre­
sponding type-I system with n unit structures. Therefore, 
the reference energy adopted in method A-I is nothing else 
but the sum of the averaged band energies over all occupied 
energy bands. The averaged band energies may be termed 
the 7r-orbital energies of the reference structure. 

On the other hand, we have averaged the coefficients of 
Pnm(X) of the infinitely large type-I system to obtain the 
coefficients of R(X) for the corresponding type-II system. 
For the following reason, this might be considered as a kind 
of random phase approximation,26 applied to the linear pe­
riodic lattice. It is interpreted as the expectation that the 
averaged band energies might be represented fairly well by 
the roots of R(X) = O, because the A„m dependence of the 
x energies of all levels in every band might tend to cancel. 
We expect that the averaged band energies derived from 
Pnm (X) = O are close to the roots of the same equation, the 
coefficients of which are instead averaged, namely, 

Xk (cos Anm) » Xk(cos A„m) (16) 

where the bar is indicative of the arithmetic average. As 
long as this holds fairly well, the roots of R (X) = O can also 
be regarded as the x-orbital energies of the reference struc­
ture. The reference polynomial itself can hence be assumed 

to be a characteristic polynomial for the aromaticity-free 
reference structure. 

This assumption leads to a new definition of Dewar-type 
resonance energies for monocyclic conjugated systems. The 
new reference energy is obtained by filling the x orbitals of 
the reference structure with the same number of x electrons 
as that of the actual molecular system, and then summing 
the x energies of all the occupied x orbitals. According to 
this definition, the resonance energy of a monocyclic conju­
gated system is calculated as the difference between the 
total HMO x energy of the system and the reference energy 
derived from R(X) = O of the same system. This method 
for evaluating the resonance energies is referred to as meth­
od A-II. 

It is self-evident that the reference polynomial for any 
acyclic polyene is identical with the HMO characteristic 
polynomial for it, because both polynomials are exactly de­
fined by eq 15. Accordingly, the resonance energy for the 
acyclic polyene completely vanishes, in accord with Dewar's 
finding that the acyclic polyene is nonaromatic.3,4 

Resonance Energies of Monocyclic Hydrocarbons 
In order to see the reasonableness of method A-II, it is 

most instructive to compare the resonance energies calcu­
lated by this method (A-II resonance energies) with those 
calculated by methods HS and A-I (HS resonance energies 
and A-I resonance energies). The resonance energies for 
monocyclic hydrocarbons, obtained by these three methods, 
are listed in Table I. 

As is easily seen from Table I, the hydrocarbons predict­
ed to be aromatic by methods HS and A-I are predicted to 
be aromatic by method A-II. Conversely, those predicted to 
be antiaromatic by them are predicted to be similarly anti-
aromatic by method A-II. Although the calculated reso­
nance energies depend slightly upon the method adopted, 
we might safely say that the A-II resonance energies are in 
close parallel with the HS and A-I resonance energies. We 
note that, since methods HS and A-I are based on the addi-
tivity of x-bond energies in nonaromatic species, the ob­
tained resonance energies are obviously of Dewar type. 
From the above comparative study, method A-II can also 
be considered to give Dewar-type resonance energies, at 
least, for monocyclic conjugated hydrocarbons. Interesting­
ly, the sign of the A-II resonance energy exactly agrees with 
that of the A-I resonance energy for every hydrocarbon in­
vestigated, even though the absolute value of the resonance 
energy might often be very small. 

As for annulenes, those with (An + 2) x electrons are 
predicted to be aromatic, and those with An x electrons are 
predicted to be antiaromatic. This is in exact accord with 
Hiickel's (An + 2) rule of aromaticity.27 Radialenes, ful-
venes, and xylylenes are all predicted to be substantially 
nonaromatic. The antiaromatic character of dimethylenecy-
clobutene28 was reproduced by method A-II. As stated by 
Hess and Schaad,28 the relative experimental stability of di-
methylenecyclobutene and the extreme instability of xyl­
ylenes29 must be ascribed to some effects other than their 
degrees of aromaticity. 

Resonance Energies of Heterocyclic Compounds 
In evaluating the resonance energies for monocyclic hy­

drocarbons, we could safely neglect the effect of bond alter­
nation on the x system, and all the resonance integrals were 
assumed to have a constant value. However, there are many 
x systems in which the effect of bond alternation cannot be 
neglected. In principle, method A-II, as well as method A-I, 
can be applied to these systems with little difficulty. First, 
we consider the aromaticity of monocyclic systems contain­
ing one or more heteroatoms, in which the resonance inte-
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Compd 

Cyclobutadiene 
Benzene 
Styrene 
Cyclooctatetraene 
[10]Annulene 
[12]Annulene 
[14]Annulene 
[3]Radialene 
[4]Radialene 
[5]Radialene 
[6]Radialene 
Triafulvene 
Fulvene 
Heptafulvene 
Dimethylenecyclo-

butene 
o-Xylylene 
p-Xylylene 

Total IT energy 

4.000 
8.000 

10.424 
9.657 

12.944 
14.928 
17.976 
7.301 
9.657 

12.160 
14.601 
4.962 
7.466 
9.994 
7.208 

9.954 
9.925 

Method HS 

-1.07° 
0.39° 
0.371 

-0.48" 
0.26° 

-0.29" 
0.23a 

-0.01° 
-0.08° 
-0.02° 
-0.01° 

0.020 
-0.01" 
-0.02" 
-0.17" 

0.040* 
0.044* 

Resonance energy 

Method A-I 

-1.093 
0.361 
0.327 

-0.529 
0.212 

-0.351 
0.151 
0.005 

-0.071 
0.000 
0.009 
0.031 
0.010 
0.005 

-0.159 

0.060 
0.062 

Method A-II 

-1.226 
0.273 
0.249 

-0.595 
0.159 

-0.394 
0.113 
0.009 

-0.072 
0.000 
0.009 
0.063 
0.020 
0.009 

-0.163 

0.059 
0.061 

a Reference 7. * Reference 29. 

Table II. Heteroatom Parameters Adopted in This Work 

Ether oxygen (O)" 
Ketone oxygen (O)* 
Amine nitrogen (N)" 
Imine nitrogen (N)c 

Thioether sulfur (S)^ 

a Reference 10. * Reference 11. 

2.00 
0.22 
1.50 
0.38 
1.00 

c Reference 13. 

0.34 
0.99 
0.90 
0.70 
0.68 

d Reference 12. 

grals for the carbon-heteroatom bonds must be changed 
from that for carbon-carbon bonds (/3). 

When HMO calculations are performed on these com­
pounds, appropriate corrections must be made to the Cou­
lomb integral for each heteroatom and to the resonance in­
tegral for each carbon-heteroatom bond. A considerable 
amount of effort has been devoted to estimating these het­
eroatom parameters.la Among them, Hess et al. evaluated 
the heteroatom parameters for the amine nitrogen,10 the 
imine nitrogen,13 the ether oxygen,10 the ketone oxygen,11 

and the thioether sulfur,12 strictly on the basis of an experi­
mental ground-state property, the heats of atomization. In 
the following calculations, we adopted these values, as they 
can be expected to be most suited to the estimation of an­
other ground-state property, resonance energies. They are 
listed in Table II. 

In order to estimate the resonance energies for hetero-
atom-containing monocyclic systems, the reference polyno­
mials must be determined for them. Although we cannot 
apply eq 15 to the heterocycle, the reference polynomial can 
be obtained by deriving first Pnm(X) for the corresponding 
type-I system, and then replacing the cosines in the coeffi­
cients by zero. For example, the reduced secular equation 

O O 
Il Il 

r (—C—C—CH=CH-CH=CH-)„ - i 

Pnm(X) = X* - 2H6X
7 

- (6 + 2kc-62 - ho2)X6 + (Uh6 + 2hokC-62)X5 

+ (9 + Uc-62 + kC-64 ~ 6h62)X4 

- (18*6 + ShokC-62)X* 
- (2 + 6A:C-62 + 3fcC-64 - 9*62 + 2 cos Km)X2 

+ (4*6 + 6hokC-62 + 4*6 cos \nm)X 
- (fcc-64 ~ 2h6

2 - 2ho2 cos A„m) = 0 (17) 

From these equations, the reference polynomial for o-ben-

H 

V 

for the system V is derived as 

zoquinone (VI) is straightforwardly given as 

R(X) =XS- 2hoX7 

- (6 + 2A:C-62 - h62)X6 + (12*o + 2hokC-62)X$ 

+ (9 + 8A:C-62 + A:C-64 - 6*6
2)*4 

- (18*6 + 8*oA:c-62)*3 

- (2 + 6A:C-62 + 3A:C-64 - 9ho2)X2 

+ (4*6 + 6h6kC-62)X - (kC-64 - 2*62) = 0 (18) 

The A-II resonance energies for typical heterocycles were 
obtained from such reference polynomials. They are listed 
in Table III, and are therein compared with those calculat­
ed by methods HS and A-I. The close resemblance between 
the A-II resonance energies and those calculated by the 
other two methods is also found for these heterocyclic sys­
tems, and the validity of method A-II therefore seems to be 
supported. This fact also strongly suggests that eq 16 widely 
holds very well. 

The striking aspect of the resonance energies for het-
eroannulenes is a strong alternation between aromaticity 
and antiaromaticity.15 When the heteroannulene is a (4« + 
2)-7r-electron system, it is predicted to be aromatic. When 
the heteroannulene is a 4«-ir-electron system, it is predicted 
to be antiaromatic. Such a trend in aromatic character is 
common to all heteroannulenes containing single heteroat-
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Table III. Resonance Energies in Units of 0 of Monocyclic Compounds Containing Heteroatoms 

Resonance energy 

Compd Total ir energy Method HS Method A-I Method A-II 

ltf-Azirine 2.000 -0.666 -0.659 -0.725 
Pyrrole 5.435 0.233 0.279 0.242 
ltf-Azepine 7.447 -0.291 -0.261 -0.288 
l//-Azonine 10.413 0.139 0.155 0.134 
Oxirene 2.000 -0.018 -0.221 -0.230 
Furan 4.598 0.044 0.044 0.044 
Oxepin 7.039 -0.051 -0.033 -0.034 
Oxonin 9.627 0.001 0.025 0.024 
Thiirene 2.000 -0.457 -0.605 -0.666 
Thiophene 5.186 0.193 0.225 0.200 
Thiepin 7.296 -0.232 -0.209 -0.228 
Thionin 10.182 0.118 0.132 0.116 
o-Benzoquinone 9.940 0.033 0.053 0.053 
p-Benzoquinone 9.914 0.036 0.056 0.055 
a-Pyrone 7.081 0.031 0.010 0.010 
7-Pyrone 6.999 0.042 0.010 0.010 
Cyclopropenone 5.065 0.126 0.136 0.164 
Cyclopentadienone 7.381 -0.094 -0.077 -0.070 
Tropone 10.064 0.053 0.070 0.071 
Pyridine 7.249 0.348 0.291 0.230 
Phenol 8.035 0.382 0.359 0.272 
Thiophenol 8.205 0.376 0.333 0.259 
Aniline 8.294 0.369 0.330 0.257 
Benzaldehyde 10.421 0.372 0.323 0.248 

oms, and indicates that Hiickel's (4n + 2) rule27 can be ex­
tended to such heterocycles as heteroannulenes. Of course, 
their chemistry is in good agreement with these predic­
tions.10 '12 '15 

The calculated resonance energies for benzoquinones and 
pyrones suggest that these compounds are almost nonaro-
matic in accord with their chemistry.30-31 Cyclopropenone 
and tropone appear to be somewhat aromatic, while cyclo­
pentadienone is slightly antiaromatic. Pyridine and mono-
substituted benzenes are supposedly as aromatic as ben­
zene. These interpretations are quite consistent with those 
of Hess and Schaad.' '-13 

Resonance Energies of Homoconjugative Systems 

Another typical T system in which the effect of bond al­
ternation is of special significance is a homoconjugative sys­
tem.32 The homoconjugation among ir bonds, spatially sep­
arated from each other, might give rise to substantial ef­
fects, if the x bonds are arranged in such a way that the 
across-space interaction between the neighbors leads to a 
closed loop over which the r electrons can be delocalized. 

VII VIII 

Here, we consider the aromaticity of two classical homo­
conjugative hydrocarbons, cyclononatriene (VII) and nor-
bornadiene (VIII). The ir frameworks of these compounds 
are illustrated respectively as IX and X. In these systems, 

IX X 

isolated double bonds are arranged in favor of such homo-
conjugation. 

As in the case of heterocycles, the P„m(.Y)-type polyno­
mial for the corresponding type-I system must first be de­
termined. For example, it is determined for the type-I sys­
tem corresponding to cyclononatriene as 

P„m{X) = X6 - (3 + 3k2)X* + (3 + 3k2 + 3k*)X2 

- ( I + k6 + 2/c3cos Anm) = 0 (19) 

Then the reference polynomial for cyclononatriene is 

R(X) =X6-(3 + 3k2)X4 

+ (3 + 3k2 + 3kA)X2 - (\ + k6) = 0 (20) 

Here, k signifies the ratio of the resonance integral between 
the neighboring nonbonded sp2-carbon atoms to that be­
tween the directly bonded sp2-carbon atoms. 

As is shown in Table IV, the A-II resonance energies for 
the two homoconjugative hydrocarbons were calculated as a 
function of k. Although the HS resonance energies are 
lacking, the reasonableness of the A-II resonance energies is 
supported fairly well by comparing them with the A-I reso­
nance energies. The absolute values of the resonance ener­
gies for the two systems are found to rapidly increase as the 
degree of bond alternation (1/A:) decreases. 

In order to estimate correctly the resonance energies for 
cyclononatriene and norbornadiene, the k values must be 
adjusted to the actual -K systems. Fortunately, Bischof et al. 
determined the k values for these compounds from the pho-
toelectron spectra:33 cyclononatriene, 0.25; norbornadiene, 
0.15. 

The k value of 0.25 for cyclononatriene corresponds to 
the resonance energy of 0.011 according to both methods. 
This amount of -K energy is only 3-4% of the total resonance 
energy of benzene [k = 1.00). Therefore, cyclononatriene 
can be regarded as a substantially nonaromatic species. 
This result rationalizes the absence of any indication of ho-
moaromaticity in the molecular structure and the heat of 
hydrogenation34 or in the N M R data.35 The calculated res­
onance energy for this compound appears to be comparable 
to the experimental error of the heat of hydrogenation. For 
reference, the thermochemical (3 value was reported to be 
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Table IV. Resonance Energies in Units of /3 of Homoconjugative 
Hydrocarbons 

Resonance energy 

k Total 7T energy Method A-I Method A-II 

A. Cyclononatriene-Type 6-x-Electron System 
0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

6.000 
6.016 
6.066 
6.155 
6.287 
6.464 
6.687 
6.955 
7.266 
7.616 
8.000 

0.000 
0.001 
0.006 
0.020 
0.045 
0.083 
0.134 
0.194 
0.259 
0.320 
0.361 

0.000 
0.001 
0.006 
0.019 
0.044 
0.079 
0.124 
0.173 
0.217 
0.252 
0.273 

B. Norbornadiene-Type 4-7r-Electron System 
0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 
4.000 

0.000 
-0.010 
-0.040 
-0.091 
-0.162 
-0.254 
-0.369 
-0.507 
-0.671 
-0.864 
-1 .093 

0.000 
-0.010 
-0.041 
-0 .093 
-0.169 
-0.272 
-0.403 
-0.564 
-0.756 
-0.978 
-1.226 

—32.74 kcal/mol.2b It is also evident that for k less than 0.3 
bond alternation is too large to allow for a noticeable ring 
current. 

In the same manner, norbornadiene with k = 0.15 is pre­
dicted to be negligibly antiaromatic with a resonance ener­
gy of —0.023. We note that the calculated resonance energy 
for a square-planar cyclobutadiene is less than —1.0. Al­
though norbornadiene is fairly reactive,36 it is strongly sug­
gested that the stability of that degree is due to the intro­
duction of marked bond alternation, which dissipates most 
of the great antiaromaticity inherent in the 4-x-electron 
system. 

Resonance Energies of Carbocyclic Ions 

No one has ever attempted to estimate Dewar-type reso­
nance energies of ionic conjugated species such as annulene 
ions. In general these are classified as nonclassical ions.32'37 

Even though the ion is an open-chain system, the additivity 
of 7r-bond energies as formulated by Hess and Schaad7 can 
no longer be applied. 

However, as in the case of the neutral species, an infinite­
ly large annulene which bears formal charges should be nei­
ther aromatic nor antiaromatic. Therefore, the unit x ener­
gy of the infinitely large charged annulene can be used for 
evaluating the aromatic stability of the monocyclic CpHp' 
series. For the estimation of the reference energy for a given 
CpHp', the ratio of the number of additional charges to the 
number of carbon atoms in the infinitely large annulene 
must first be adjusted to that of the ion in question (q/p). 
For example, the reference energy for the cycloheptatrienyl 
cation (CiHj+) must be derived from the unit x energy of 
the infinitely large annulene from which a seventh part of 
the x electrons are removed. 

After a simple treatment of the analytical expression for 
the 7r-orbital energies of annulene,38 the reference energy 
(£ ref) for CpHp' is given by 

£ref(CpHp?) = ^COS (^j (21) 
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Table V. Resonance Energies in Units of /3 of Annulene Ions 

Resonance energy 

Species Total x energy Method A-I Method A-II 

C 3 H 3
+ 

C 4 H 4
2 + 

C 3 H 3 -
C 4 H 4 

C 5 H 5
+ 

C 6 H 6
2 + 

C 4 H 4
2 " 

C 5 H 5 -
C 6H 6 

C 7 H 7
+ 

C 8 H 8
2 + 

C 6 H 6
2 " 

C 7 H 7 -
C8Hs 
C 9 H 9

+ 

C 1 0 H 1 0
2 + 

C 8 H 8
2 -

C 9 H 9 -
CioHio 
C1 1H1 1

 + 

C 1 2 H 1 2
2 + 

C 1 0 H 1 0
2 -

C 1 1 H 1 1 -
C1 2H1 2 

C 1 3 H 1 3
+ 

C 1 4 H 1 4
2 + 

A. 2-X 
4.000 
4.000 

B. 4-x 
2.000 
4.000 
5.236 
6.000 

C. 6-7T 
4.000 
6.472 
8.000 
8.988 
9.657 

D. 8-X 
6.000 
8.098 
9.657 

10.823 
11.708 

-Electron Systems 
0.692 
0.399 

-Electron Systems 
-1 .308 
-1.093 
-0 .819 
-0.616 

-Electron Systems 
0.399 
0.418 
0.361 
0.299 
0.246 

-Electron Systems 
-0.616 
-0.591 
-0.529 
-0.462 
-0.401 

E. 10-7r-Electron Systems 
9.657 

11.518 
12.944 
14.053 
14.928 

0.246 
0.233 
0.212 
0.190 
0.170 

F. 12-7r-Electron Systems 
11.708 
13.484 
14.928 
16.110 
17.086 

-0.401 
-0.379 
-0.351 
-0.321 
-0 .293 

0.536 
0.305 

-1 .464 
-1.226 
-0.919 
-0.692 

0.305 
0.317 
0.273 
0.225 
0.186 

-0.692 
-0.665 
-0.595 
-0.520 
-0.451 

0.186 
0.175 
0.159 
0.143 
0.128 

-0.451 
-0.426 
-0.394 
-0.361 
-0.329 

The A-I resonance energies for annulene ions can easily be 
obtained with this expression. 

On the other hand, we stated before that the roots of 
R (X) = 0 for a conjugated system can be interpreted as the 
7r-orbital energies of the reference structure for it, because 
they represent a kind of mean band energies of the corre­
sponding infinitely large type-I system. This interpretation 
tempts us to predict the aromaticity of the annulene ions 
with the use of method A-II. 

The reference energy for a given ion is then given, as be­
fore, by filling the x orbitals of the reference structure for it 
with the same number of x electrons as that of the actual 
ion. The obtained results for a series of annulene ions are 
presented in Table V. Although the HS resonance energies 
cannot be defined for them, the general agreement between 
the A-II and A-I resonance energies provides further justifi­
cation for method A-II and, especially, for eq 16. 

It is clear from Table V that the number of x electrons is 
a determinant of aromaticity. All species with (4n + 2) x 
electrons are predicted to be aromatic. All species with An x 
electrons are predicted to be antiaromatic. Aromaticity or 
antiaromaticity is found to decrease as the ring size in­
creases. When p is even, the resonance energy of CpHp* is 
equal to that of C p H p - ' . The signs of the calculated reso­
nance energies are in exact accord with available experi­
mental evidence.39 This approach gives the best verification 
of Huckel's (An + 2) rule of aromaticity27 within the H M O 
theory. 

In this relation, some attempts have been made to esti­
mate the resonance energies for these cyclic ions by com-
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Table VI. Resonance Energies in Units of /3 of Polycyclic Conjui 

Compd 

Butalene 
Pentalene 
Naphthalene 
Heptalene 
Octalene 
Benzocyclobutadiene 
Azulene 
Triafulvalene 
Calicene 
Fulvalene 
Sesquifulvalene 
Heptafulvalene 
Diphenyl 
Biphenylene 
Stilbene 
1,2-Naphthalenequinododimethide 
2,3-Naphthalenequinododimethide 
Naphtho[a]cyclobutadiene 
Naphtho[fe]cyclobutadiene 
Acenaphthylene 
.s-Indacene 
<w-Indacene 
Cyclopent [cd] azulene 
Aceheptylene 
Anthracene 
Phenanthrene 
Pyrene 

Total ir energy 

7.657 
10.456 
13.683 
15.618 
18.103 
10.381 
13.364 
7.464 

10.939 
12.799 
15.931 
18.005 
16.383 
16.505 
18.878 
15.802 
15.532 
15.996 
16.200 
16.619 
16.231 
15.899 
16.366 
18.911 
19.314 
19.448 
22.505 

" Reference 7. * Reference 9.c Reference 29. 

paring the ir energy of the ion with that of a corresponding 
open-chain system. According to this principle, Dewar pre­
sented PPP results on the aromaticity of some carbocyclic 
ions.40 Hobey estimated the resonance energies of annulene 
ions with a free electron molecular orbital (FEMO) 
model.41 However, one of the difficulties in using an acyclic 
conjugated system as a reference structure is that the geom­
etry of the ion and the number of •K bonds are not preserved 
in it. To make matters worse, the FEMO model cannot re­
produce even the established additivity of ir-bond energies 
for a neutral species. Our reference energies are evidently 
free from these difficulties. The contributions from all x 
bonds are counted in the reference energies. It goes without 
saying that the applicability of methods A-I and A-II is not 
restricted to the above carbocyclic ions. The methods can be 
applied to any monocyclic ion. 

Resonance Energies of Polycyclic Hydrocarbons 
In the preceding sections, we have repeatedly verified the 

validity of method A-II by comparing the results with those 
obtained by methods HS and A-I. As far as the monocyclic 
conjugated systems are concerned, it can be concluded that 
the A-II resonance energies are as reasonable as the A-I 
resonance energies, in that they precisely correlate with the 
HS resonance energies. It seems to us that even some ambi­
guity in the HS resonance energies can be avoided by using 
either method A-I or method A-II. For example, the HS 
resonance energy of oxirene (Table III) is negligible, al­
though it has never been isolated. The resonance energy of 
this compound appears to be much improved by our two 
methods. 

Unfortunately, method A-I can be applied only to mono­
cyclic conjugated systems. In other words, the periodic 
type-I system cannot be imagined for any polycyclic conju­
gated system, although many polycyclic systems are known 

Hydrocarbons 

Resonance energy 

i odHS 

•0.40" 
•0.141* 
0.55" 
•0.050* 
•O.IO" 
•0.22" 
0.231* 
•0.60" 
0.35" 
•0.33" 
0.27" 
•0.20" 
0.72" 
0.33" 
0.71" 
0.338c 

0.093f 

•0.15" 
0.08" 
0.47" 
0.110* 
•0.249* 
0.220* 
0.229* 
0.66" 
0.77" 
0.81" 

Method A-II 

-0 .604 
-0.215 

0.389 
-0.141 
-0.259 
-0 .393 

0.151 
-0.461 

0.433 
-0.299 

0.272 
-0.218 

0.502 
0.123 
0.481 
0.258 
0.141 

-0.384 
-0 .114 

0.354 
0.055 

-0.306 
0.101 
0.106 
0.475 
0.546 
0.598 

as aromatic. Since the ^ n , (A")-type polynomial cannot be 
defined for these systems, the reference energy cannot be 
derived from eq 8. Method A-II in its original form cannot 
be applied to the polycyclic systems, either, because there is 
no Pnm(X)-type polynomial from which the reference poly­
nomial must be derived. 

In order to overcome this difficulty, let us stop using eq 9 
and 10 as a definition of the reference polynomial. Instead, 
we adopt eq 15 as a new definition of the reference polyno­
mial. By inspection of the reference polynomials for various 
monocyclic hydrocarbons, we noticed before that all the 
contributions from cyclic components of the molecular 
graph are missing in the coefficients of the reference poly­
nomial. As far as the monocyclic hydrocarbons are con­
cerned, the aromaticity is undoubtedly associated with the 
cyclic structure of the 7r system. On this basis, we assume 
that the reference polynomial for a polycyclic conjugated 
hydrocarbon can also be obtained by excluding from the 
coefficients of the HMO characteristic polynomial all the 
contributions from cyclic components of the corresponding 
molecular graph. For example, the HMO characteristic 
polynomial for naphthalene is 

P[X) = X10 - 1IA-8 + 41A5 - 65A4 + 43A-2 - 9 (22) 

while the reference polynomial for the same compound is 
then given as 

R(X) =X10- UXS + 41A-6 -61A -4 + 3IA-2 - 3 (23) 

The resonance energy for a polycyclic hydrocarbon is de­
fined as before from these two types of polynomials. Since 
this definition necessarily includes that given to the mono­
cyclic conjugated hydrocarbon, the obtained resonance en­
ergy is similarly termed the A-II resonance energy. 

However, the definition of the A-II resonance energy for 
a polycyclic hydrocarbon is not based on a physical inter-
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Table VII. Resonance Energies in Units of 0 of Polycyclic Heterocyclic Compounds 

Resonance energy 

Compd Total x energy Method HS Method A-II 

Indole 11.236 0.466" 0.375 
Benzofuran 10.526 0.356" 0.272 
Benzo[6]thiophene 11.011 0.443* 0.349 
Quinoline 12.598 0.516' 0.356 
Isoquinoline 12.559 0.5 \4C 0.351 
Cycl[3.2.2]azine 14.136 0.475" 0.400 
Cycl[3.3.3]azine 16.424 0.015" 0.145 
Tetrathiofulvalene 7.669 0.282 0.032 

" Reference 10. * Reference 12. c Reference 13. 

pretation because a relation like eq 16 does not exist for the 
polycyclic system. The only way of judging the validity of 
method A-II in this extended form is to examine extensively 
the numerical results with a variety of polycyclic conjugat­
ed hydrocarbons. The A-II resonance energies for these 
compounds, calculated in this manner, are listed in Table 
VI. They are therein compared with the HS resonance ener­
gies. 

It is clear from Table VI that the agreement between 
these two sets of resonance energies is excellent for all poly­
cyclic hydrocarbons investigated. As the A-II resonance 
energies were calculated independently by quite a different 
method, it is strongly suggested that the agreement is not 
accidentally attained. We emphasize that, in line with the 
HS resonance energies, the A-II resonance energies are all 
satisfactorily of Dewar type. This fact indicates that the 
reference energy derived from the reference polynomial can 
always be regarded as the total HMO x energy of the aro-
maticity-free reference structure. 

All benzenoid hydrocarbons are predicted to be stable 
enough. The introduction of a four-membered ring results 
in a great decrease in the stability of the entire x system. 
Symmetric fulvalenes and aj-indacene are predicted to be 
antiaromatic, whereas asymmetric fulvalenes and j-indac-
ene are predicted to be aromatic. Two Hafner hydrocar­
bons,42 cyclopent[crf]azulene and aceheptylene, are sug­
gested to be slightly aromatic. The correlation between the 
resonance energies for these compounds and their chemical 
behavior has been fully examined and discussed by Hess 
and Schaad7-9 and Gleicher et al.29 

From the above comparative study, it has been estab­
lished that, as in the case of a monocyclic hydrocarbon, the 
resonance energy of a polycyclic hydrocarbon is closely re­
lated to the cyclic structure of the x system. In this sense, 
method A-II in its extended form fulfills our chemical sense 
that the aromatic stabilization must arise from the cyclic 
structure of the x system. 

The following consideration might give a further under­
standing of the A-II resonance energies. By Dewar's defini­
tion,3,4 the reference structure of any conjugated hydrocar­
bon is a hypothetical polyene. Therefore, it should be alter­
nant. It must be remembered that the reference polynomial 
R(X) for a polycyclic hydrocarbon is correspondingly con­
structed in the same manner as the HMO characteristic 
polynomial for an alternant acyclic polyene,22,24 neglecting 
all the contribution from cyclic components of the molecu­
lar graph. As in the case of a monocyclic hydrocarbon, it is 
an even function of X, because the conjugated hydrocar­
bons of interest are all even membered. Therefore, when Xt 
is a root of R(X) = 0, —X,- is also a root. We also remember 
that the alternant hydrocarbon is characterized by such a 
pairing theorem.43 Accordingly, the assumption of Hess 
and Schaad7 that the reference structure for a cyclic conju­

gated hydrocarbon can be constructed with appropriate x 
bonds of acyclic polyenes seems to be visualized by the 
omission of cyclic components of the molecular graph. 

From this viewpoint, method A-II in its extended form 
may give an exact reference energy for any conjugated hy­
drocarbon, because the obtained reference polynomial satis­
fies the pairing theorem. If this is true, method A-II must 
be preferred to method A-I. In this case, it is necessary that 
the additivity of x-bond energies must be modified for the 
olefinic reference structure. When method A-II is em­
ployed, the reference energy often deviates slightly from 
strict additivity of x-bond energies. For example, the A-I 
reference energy of benzene (7.639) is exactly half the A-I 
reference energy of [12]annulene. However, it is not true 
for the A-II reference energies; the A-II reference energies 
are 7.727 for benzene and 15.322 for [12]annulene. In all 
events, the difference between the A-I and A-II reference 
energies is slight, and of no practical significance. 

Resonance Energies of Polycyclic Heterocyclic Compounds 
The surprising success of method A-II in predicting the 

aromaticities of polycyclic hydrocarbons suggests that, if a 
graph-theoretical method for constructing the HMO char­
acteristic polynomial for a heteroatom-containing polycy­
clic system were available, method A-II could be used to 
predict the aromaticity of the heterocycle in the same man­
ner. 

In 1974, Mallion et al. reported on the method for graph­
ically determining the coefficients of the HMO characteris­
tic polynomial for the heterocyclic compound, on the as­
sumption that the resonance integrals are all equal in the x 
system.44 For the present purpose an extension of this meth­
od including the hetero-bond parameters has now been de­
veloped, and a computer program written to carry out the 
tedious enumeration of the coefficients.45 The reference 
polynomial for the heterocycle again has cyclic components 
of the molecular graph excluded. 

The A-II resonance energy for a heterocycle is analo­
gously defined as the difference between the total x energy 
calculated from the HMO characteristic polynomial and 
that calculated from the corresponding reference polynomi­
al. The A-II resonance energies for heteroatom-containing 
monocyclic systems (Table III) are of course in harmony 
with this definition.45 Table VII contains a list of the A-II 
resonance energies calculated for the polycyclic compounds 
containing heteroatoms. 

The correlation between the A-II and HS resonance 
energies for these compounds seems to be reasonable, as 
compared with the correlation for the polycyclic hydrocar­
bons. The A-II resonance energies for indole, benzofuran, 
and benzo[6]thiophene are distributed between the reso­
nance energies for benzene and naphthalene (Tables I and 
VI). The A-II resonance energies for quinoline and isoqui-
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noline are comparable to that for naphthalene. The same 
situation is encountered among the HS resonance energies. 
In accord with the prediction of Hess et al.,10 cycl[3.2.2]a-
zine is predicted to be much more aromatic than cy-
cl[3.3.3]azine. 

However, the A-II resonance energy for tetrathioful-
valene is considerably smaller than the HS resonance ener­
gy for it. According to the HMO calculation, the highest 
occupied x orbital of this compound has an antibonding 
character. The iso-7r-electronic hydrocarbon, heptaful-
valene, was predicted to be antiaromatic (Table VI). In ad­
dition, this compound is easily oxidized to the cation radi­
cal.46 Considering these properties of tetrathiofulvalene, 
our prediction of the resonance energy for it appears to be 
more probable. 

In a previous paper,15 we suggested that the electronega­
tivity of the heteroatom influences the TT energies of the 
nearby tr bonds. Owing to this effect, when the carbon-het-
eroatom bonds are predominant in the T system, the devia­
tion of the HS resonance energy from the A-I resonance en­
ergy may sometimes be magnified. A good example is oxi-
rene, for which the HS resonance energy is much larger 
than the A-II or A-I resonance energy (Table III). Another 
example may be tetrathiofulvalene, because eight of its 
eleven ir bonds are carbon-sulfur bonds. 

Concluding Remarks 

As has been seen above, it has been clearly established 
that method A-II gives Dewar-type resonance energies for 
all kinds of conjugated systems, including conjugated hy­
drocarbons, heterocycles, and cyclic conjugated ions, within 
the framework of the HMO theory. It has also been verified 
that the Dewar-type resonance energy is a topological quan­
tity, depending solely upon the cyclic structure of the ir sys­
tem. The HMO theory is only one MO theory which can 
verify the topological nature of calculated resonance ener­
gies. Method A-II, based on graph theory,22 can now be 
considered as a much more straightforward and less ambig­
uous method for obtaining the Dewar-type resonance ener­
gy, although quite a similar result can be obtained by meth­
od HS. This is exclusively ascribed to the reference polyno­
mial defined without ambiguity. The uniqueness of the ob­
tained resonance energy is characteristic of method A-II. 

A comparison of the HMO results with the PPP results4 

has been made by Schaad and Hess,2 and these methods 
along with resonance theory results have been compared by 
Herndon and Ellzey.17 They concluded that the HS reso­
nance energies are at least as reasonable as those derived by 
the PPP method. The same conclusion applies to our A-II 
resonance energies. We have neglected some energy terms, 
such as strain energy and ^-compression energy, in the 
HMO calculations. Nevertheless, a good correlation found 
between calculated resonance energies and experimental 
properties for a wide variety of conjugated systems evident­
ly supports that the A-II resonance energies can be regard­
ed as excellent aromaticity indices. 
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